4 research outputs found

    Automatic workflow for narrow-band laryngeal video stitching

    Get PDF
    In narrow band (NB) laryngeal endoscopy, the clinician usually positions the endoscope near the tissue for a correct inspection of possible vascular pattern alterations, indicative of laryngeal malignancies. The video is usually reviewed many times to refine the diagnosis, resulting in loss of time since the salient frames of the video are mixed with blurred, noisy, and redundant frames caused by the endoscope movements. The aim of this work is to provide to the clinician a unique larynx panorama, obtained through an automatic frame selection strategy to discard non-informative frames. Anisotropic diffusion filtering was exploited to lower the noise level while encouraging the selection of meaningful image features, and a feature-based stitching approach was carried out to generate the panorama. The frame selection strategy, tested on on six pathological NB endoscopic videos, was compared with standard strategies, as uniform and random sampling, showing higher performance of the subsequent stitching procedure, both visually, in terms of vascular structure preservation, and numerically, through a blur estimation metric

    Learning-based classification of informative laryngoscopic frames

    Get PDF
    Background and Objective: Early-stage diagnosis of laryngeal cancer is of primary importance to reduce patient morbidity. Narrow-band imaging (NBI) endoscopy is commonly used for screening purposes, reducing the risks linked to a biopsy but at the cost of some drawbacks, such as large amount of data to review to make the diagnosis. The purpose of this paper is to present a strategy to perform automatic selection of informative endoscopic video frames, which can reduce the amount of data to process and potentially increase diagnosis performance. Methods: A new method to classify NBI endoscopic frames based on intensity, keypoint and image spatial content features is proposed. Support vector machines with the radial basis function and the one-versus-one scheme are used to classify frames as informative, blurred, with saliva or specular reflections, or underexposed. Results: When tested on a balanced set of 720 images from 18 different laryngoscopic videos, a classification recall of 91% was achieved for informative frames, significantly overcoming three state of the art methods (Wilcoxon rank-signed test, significance level = 0.05). Conclusions: Due to the high performance in identifying informative frames, the approach is a valuable tool to perform informative frame selection, which can be potentially applied in different fields, such us computer-assisted diagnosis and endoscopic view expansion

    Cinema and Neurology: From History to Therapy

    No full text
    corecore